
calculations show that the swelling substantially influences the infiltration into the clay soil. 
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G R O W T H  A N D  C O L L A P S E  OF V A P O R  B U B B L E S  IN 

B O I L I N G  L I Q U I D  

F. B. N a g i e v  and N. S. K h a b e e v  UDC 532.529 

A study is made of the dynamics and heat-mass exchange of vapor bubbles in water and cryogenic liquids 
under the action of an abrupt pressure change, which corresponds to bubble behavior in a shock wave, when the 
wave enters a bubble curtain. Behavio r under varying pressure is also studied. 

A system of basic equations describing the heat-mass exchange processes and dynamics of a spherical 
homobaric bubble in a liquid was presented in [1]. The equations of heat adflux, continuity, and state in spher- 
ical Euler coordinates (r, t) have the form 

[ au v Our ~ 1 O t OT,, "~ Pv dPv 
po[-  +v~ or ] +  d-r, 

ap,, 1 0 7i- + 7 ~ (r~p~ = 0, pc (t) = Bpo (r, t) T~ (r, t), 
............ (1) 

I Ou I Ou~'~ t O z OT z k 

vz = w~R2/r~, u, = c,T, ,  u~ --- r p, = const, 

where p is the density; T, temperature; p, pressure; v, velocity; u, specific internal energy; X, thermal con- 
ductivity coefficient; R, bubble radius; wl, mass velocity of liquid on bubble surface; B, gas constant; Cv, 
specific heat of vapor at constant volume. The subscripts l and v refer to liquid and vapor parameters, re- 
spectively, while the subscript 0 indicates parameters in the unperturbed state. 

The boundary conditions for the heat adflux equations have the form 

r = O, aT~/ar = O, 

r = co, T, = To, (2) 

aTz X OT, r=R(t)~ )~z~--  o ~ = ] l ,  T,=T~=T,(Po), 

where  T s (Pv) is the sa tura t ion  t empe ra tu r e ;  j is the r a t e  of phase  convers ion  per  unit sur face ;  l is the latent  
heat  of evaporat ion.  The las t  condition defines the so -ca l l ed  quas i - equ i l ib r ium approximat ion.  The bubble 
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surface velocity and the phase mass velocities on this surface are related by the expressions 

"R = w~ + t i p .  -~ = % + i /p , (n ) ,  (3) 

The bubble pulsation equation in the presence of phase transitions is written in the form [2] 

+--s + Pt Pt --4-~-wt,  (4) 

where p~ is the liquid pressure far from the bubble; •, surface tension coefficient; u, kinematic viscosity 
coefficient. 

In fulfilling the homobaric condition, when the bubble size is significantly less than the length of a sound 
wave in the vapor, the equation of heat adflux in the vapor phase has an integral 

07t' / 37Pt: @~dt = s (~n-: ~______A z~ W-~/R R wo. (5) 

The homobarie condition also permits  definition of the velocity profile withi.n the bubble by integration of the 
vapor phase continuity equation with considerat ion of the boundary conditions Vv(0 , t) = 0, vv(R , t) = Wv: 

r 7--1F ~T v r / OT~'~ 1 [ o-W-r (r, (6) 

where 7 is the adiabatic index of the vapor." 

In [1] the above sys t em of equations was solved numerical ly  for various regimes  of radial bubble motion 
in water  under conditions close to normal.  In the present  study we will examine the dynamics of vapor bubbles 
in water  under high p ressu re ,  and also in cryogenic liquids. 

Figure  1 shows curves of bubble radius and internal p r e s s u r e  (dashed curves) as functions of t ime for 
growth of bubbles with initial radii of R 0 = 5, 7, 10 pm (curves 1-3), when the liquid p ressu re  far  f rom the 
bubble is abruptly reduced f rom P0 = 4.106 Pa to Pl = 2 �9 106 Pa. Figure  2 shows the charac te r i s t i c  t empera -  
ture  distribution corresponding to curve 3 of Fig. 1. Curves 1-5 correspond to times t = 0.05, 0.1, 0.3, 0.6, 
0 .9psee .  Here R* = R / R  0, P = Pv/P0,  | = T / T 0 ,  ~ = r / R .  The initial t empera ture  in the s y s t e m w a s  homo- 
geneous and equal to the saturat ion tempera ture  corresponding to equilibrium pressu re  within the bubble: T o -- 
TS(p0), p0 P0 + 2c~/R0. For  grea te r  c lar i ty  the spatial s ca l e s fo r  vaporand liquid phases are  different. 

It is evident f rom Figs.  1 and 2 that with passage of a cer tain time the p ressures  within bubble and liquid 
equalize, the tempera ture  of the vapor within the bubble gradually reduces to the saturat ion t empera tu re  cor -  
responding to the external p ressu re  Pl, and fur ther  bubble growth occurs  in the thermal regime [3]. The tem- 
pera ture  distribution in the liquid enters a se l f - s imi la r  regime,  in which the tempera ture  is dependent solely 
on ~ = r / R ( t )  [4]. Thus, at high pressures  the behavior of gas bubbles with a dropoff in p ressure  is quali ta-  
tively the same as under normal  conditions [1]. However, at high parameter  values,  where the thermophysical  
propert ies  of vapor and liquid approach each other,  the role of internal thermal  energy increases .  

We note that the tempera ture  of the vapor in the bubble is pract ical ly homogeneous and equal to the 
saturation tempera ture  not only under the usually employed but seldom real izable condition that the bubble 
size be less than the thickness of the thermodiffusion layer  in the vapor R < (av/~O)J2, but also under the 
condition c p T S / l  ~ 1, where a v is the thermal  diffusivity of the vapor,  Cp is the vapor specific heat at con- 
stant p res su re ,  and w is the frequency of radial  bubble oscillation. In fact,  it follows f rom the equation for 
energy in the vapor phase,  Fq. (1), that vapor heating in the central  part  of the bubble where there are no 
large tempera ture  gradients is defined by the approximate equation 

9 , v v d T , / d t  ~ d p j d t .  (7) 

Using the C lapey ron -Claus ius  relat ionships under conditions far  f rom cri t ical ,  where Pv << Pl, one can 
wri te  

dp~ zoo dT s (8) 
dt T B dt 

Substituting Eq. (8) in Eq. (7), we find 

cpT 8 dT~ dT S 
m (9) 

l dt d~ " 

679 



R ~ 

2 

I 

o o,9 

J 
- ~-__-__~_~ 

o,41 
t ,  /ISeC 

! i :  

'? Op9 f,g' ~,,0 ; ,05~ 

Fig.  1 F ig .  2 

It is evident f rom Eq. (9) that  at A = cvT s / l  ~ 1 (under a tmospher i c  p r e s s u r e  this oc c u r s ,  for  example ,  for  
liquid hel ium,  and a lso  occurs  for  wa te r  at p ~ 3 . 1 0  ~ Pa) T v ~ TS, and the amour~ of deviat ion of the p a r a m -  
e t e r  A f rom unity c h a r a c t e r i z e s  the deviat ion of the t e m p e r a t u r e  in the cen te r  o f ~  suff ic ient ly  l a rge  bubble 
f r o m  the su r face  t e m p e r a t u r e  T S (Pv). 

The bubble heat capac i ty  along the phase equi l ib r ium curve  is wr i t t en  in the fo rm [5] 

( )  () : dp 0 t ~ cp rs .  (10) cs = cp - -  T -EF  s -  ~ -5 -  p 

F o r  the ma jo r i ty  of l iquids ,  in p a r t i c u l a r ,  for  wa te r ,  under  no rma l  condit ions c S < 0. This means  that for  the 
vapor  to r ema in  sa tu ra t ed  dur ing c o m p r e s s i o n  heat  must  be removed  f rom it.  

If we in tegra te  the equation of heat  adflux (1) over  the bubble volume (given its homogeneity) we then 
obtain an expres s ion  for  the total  f lux into the vapor  phase on the bubble su r f ace  

OTv t csTs R dPv 
2o-O[-r I~ l 3 dt " 

ze ro .  

(11) 

F r o m  Eqs.  (10), (11) i t  is evident  that  at A = 1 c S = 0 and the heat flux into the vapor  bubble is equal to 

F r o m  Eqs.  (2), (10), (11) i t  follows that 

OT~ I 

i (A -- i) ~ 
where  ~ ( A , ' ~ ) = ( v _ t ~ A  -~" A 

(~--i)A' 
(12) 

Norma l ly  the the rmal  flux into the vapor  phase is neglected in Eq. (2), which c o r r e s p o n d s  to a p p r o x i m a -  
tion by the  t e r m  (A - 1)2/A in ~(A, 7). F r o m  Eq. (12) i t  is  evident that this is a dm i s s i b l e  if 

(A - -  t )  ~ << 1/(? - -  l). (13) 

Equation (13) was obtained assuming  homogenei ty of bubble p a r a m e t e r s ,  i . e . ,  s t r i c t l y  speaking,  for  suff ic ient ly  
s m a l l  bubbles.  At high p a r a m e t e r  values  where  the p r o p e r t i e s  of vapor  and liquid approach  each o the r ,  the 
unjust i f ied assumpt ion of homogenei ty in bubble p a r a m e t e r s  can lead to s ignif icant  e r r o r s .  

F i g u r e  3 shows c h a r a c t e r i s t i c  t e m p e r a t u r e  d i s t r ibu t ions  for  pulsat ions of vapor  bubbles of two di f ferent  
s i zes  in w a t e r ,  produced by ins tantaneous i n c r e a s e  in liquid p r e s s u r e  fa r  f rom the bubble f rom P0 = 4.106 Pa  
to P l = 8 " 1 0 6  Pa  (a: R 0=0 .01  ram; b: R 0 = 1  ram), with T 0= TS(P~ Curves 1-6 c o r r e s pond  to t imes  w t = 0 ,  
2v: /5 ,  4 ~ / 5 ,  6 u / 5 ,  8 u / 5 ,  2u, while ~t  = 0 and 2,~ a r e  two s u c c e s s i v e  t imes  of max imum bubble c o m p r e s s i o n .  
As is evident f rom Fig.  3, the t e m p e r a t u r e  d i s t r ibu t ion  curves  a r e  nonmonotonic, with t e m p e r a t u r e  "wel ls"  
appear ing  in ce r t a in  t ime in t e rva l s .  In the va r i a n t  under  cons ide ra t ion  c S > 0; t h e r e f o r e  upon c o m p r e s s i o n  the 
t e m p e r a t u r e  at the bubble cen te r  is less  than the su r face  t e m p e r a t u r e  TS (Pv). 

F i g u r e  4 shows a compa r i son  of t heo re t i c a l l y  ca lcu la ted  r a d i u s - t i m e  curves  with expe r imen ta l  da ta  [6] 
on bubble growth in liquid ni t rogen with gradua l  p r e s s u r e  d e c r e a s e  f rom P0 = 153 �9 103 Pa  to Pl = 116 �9 103 Pa  
co r r e spond ing  to curve  5. In i t ia l  bubble radius  R 0 = 0.4 ram; in i t ia l  t e m p e r a t u r e  in the s y s t e m  was homo-  
geneous and co r re sponded  to the sa tu ra t ion  t e m p e r a t u r e  T o = Ts(p~ Curve 1 is  a solut ion of the p rob lem in 
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the full formulation of [i] as presented here; curve 2 is an inertial Rayleigh solution obtained by numerical 
integration of Eq. (4) with Pv = 153.103 Pa, p~(t) corresponding to curve 5. Curve 3 coi~responds to asymptotic 

bubble growth in the thermal regime of [3], defined by a constant overheating AT = T 0- TS(p/). In this case 
R ~ ~. Curve 4 is an approximate analytical solution of the problem of bubble growth in a variable pressure 
field, obtained in [7]. This solution, obtained with the assumption that the thermal mechanism predominates 
and that the thermal boundary layer in the liquid is thin, generalizes the solution of [3] to the case of variable 
pressure. Certain differences between curves 1 and 4 are apparently related to the fact that in contrast to [7], 
the present study completely considers the effects of variation in the vapor properties. As is evident from Fig. 
4, curves 1 and 4 describe the experiments satisfactorily, while the limiting curves 2 and 3 bracket the ex- 
perimental points. We note that the data of [6] with decreasing pressure were obtained on preexisting bubbles. 
However, as was noted in [7], one cannot predict the type of thermal boundary layer existing in bubbles which 
have grown or collapsed, nor the effect of this layer on subsequent behavior. 

Figure 5 shows computed radius-time curves for collapsing vapor bubbles in various liquids. Curves 
1-5 show bubble behavior in water, Freon-12, nitrogen, hydrogen, and helium under identical initial condi- 

tions. The pressure in the liquids was instantaneously increased from P0 = 105 Pa to Pl = 12 �9 104 Pa, with ini- 
tial bubble radius R 0 = I0 pm, initial system temperature homogeneous and equal to the saturation tempera- 
ture corresponding to equilibrium pressure in the bubble. 

The behavior of curves 1-5 in Fig. 5 confirms the effectiveness of the parameter B 0 = ja2al/Ro(Pl/Ap) I/2 
introduced in [8] for predicting the character of vapor bubble collapse. Here Ja = eiATpl/Ipv 0 is the Jacobi 
number, a I is the thermal diffusivity of the liquid, Ap = Pl -- P0, AT = T S (p/) - To. The parameter B 0 was de- 

I/2 �9 �9 fined in [8] as the ratio of the characteristic bubble collapse time tp = P~o(Pl/AP) , if this process were 
limited only by liquid inertia, to the bubble combination time t T = R2/aiJa 2, if the latter were determined 
solely by heat transfer. Thus, for large values of B 0 the bubble collapse process is close to the limiting iner- 
tial regime, while at low B 0 it is close to the thermal regime. Curves 1-5 in Fig. 5 correspond to values B 0 = 
8; 6" 10-2; 10-2; 5" 10-4; 2" 10 -4. 

F i g u r e  6 shows  a c o m p a r i s o n  of c a l c u l a t e d  r a d i u s - t i m e  c u r v e s  wi th  e x p e r i m e n t a l  d a t a  [8] on c o l l a p s e  of 
a i r  v a p o r  bubb les  in w a t e r  u n d e r  fo l lowing  i n i t i a l  cond i t i ons :  R 0 = 3.66 ram,  P0 = 636 .102  P a ,  T O = Ts(P0) (curve  
1), R 0 = 3.36 m m ,  P0 = 734.102 P a ,  T O = TS(P0) {curve 2). In both  c a s e s  the  s y s t e m  was  a b r u p t l y  p l a c e d  u n d e r  
an a t m o s p h e r i c  p r e s s u r e  of Pl = 105 P a ,  w i th  the  i n i t i a l  con ten t  of u n d i s s o l v e d  gas  in the bubb les  c o m p r i s i n g  
k = 0.0002, 0.0006,  r e s p e c t i v e l y .  To c o n s i d e r  th is  f ac t  c u r v e  2 was  a l s o  c a l c u l a t e d  wi th  a s y s t e m  of  equa t ions  
f o r  v a p o r - g a s  bubb les  [9] (dashed  l ine) .  C a l c u l a t i o n s  showed  tha t  such  a low gas  con ten t  has  p r a c t i c a l l y  no 
e f fec t  on the  i n i t i a l  b e h a v i o r  of the  r a d i u s - t i m e  c u r v e ,  l e a d i n g  only  to i n c o m p l e t e  c o l l a p s e  of the  b u b b l e s .  

F o r  c l a r i t y  the  c u r v e s  a r e  shown wi th  d i f f e r e n t  s c a l e s :  c u r v e  1 c o r r e s p o n d s  to the  ! e f t - h a n d  v e r t i c a l  and 
u p p e r  h o r i z o n t a l  a x e s ,  wh i l e  c u r v e  2 c o r r e s p o n d s  to the  r i g h t - h a n d  v e r t i c a l  and l o w e r  h o r i z o n t a l  a x e s .  The 
p r e s e n t  r e s u l t s  a g r e e  w e l l  w i th  the  e x p e r i m e n t a l  da ta .  The d a s h - d o t  c u r v e  r e p r e s e n t s  t h e o r e t i c a l  c a l c u l a t i o n s  
of [10] fo r  c u r v e  1. In [10] an a r b i t r a r y  a s s u m p t i o n  of  p a r a b o l i c  v e l o c i t y  d i s t r i b u t i o n  of v a p o r  p a r t i c l e s  in the  
bubb le  was  u s e d ,  l e ad ing  to a d i s t o r t i o n  of the  t e m p e r a t u r e  p r o f i l e .  M o r e o v e r ,  as was  noted  in [1], the  a u t h o r s  
of [10] n e g l e c t e d  the  t h e r m a l  f lux into  the  v a p o r  phase .  H o w e v e r ,  as  fo l lows  f r o m  the  r e s u l t s  of the  p r e s e n t  
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study, the major  shor tcoming of [10], leading to significant divergence f rom experiment,  was the improper  
choice of a step size in the finite difference sys t em for the liquid energy equation. These steps should sat isfy 
the condition hl << 6l, where 5 l ~ (al/~O) 1/2 is the thickness of the tempera ture  boundary layer  in the liquid, 
w = (37po/pl)~/2/Ro is the frequency of radial  bubble oscillation. For  the variant  shown in Fig. 6, 5 l ~ 10 -5 m, 
or  5 l ~ 0.3 �9 10 -2 1R 0. Consequently, the step h l should sat isfy the condition h I < 10 -3 R0+ The choice in [10] of a 
c o a r s e r  step (h l = 10 -2 R0) led to a significant reduction in the liquid tempera ture  gradient in the wall boundary 
layer ,  and thus to a significant reduction in phase transit ion ra te ,  since,  according to Eq. (2), 

whence 

~ L ~  a~ 
h l ' 

Xza:r (14) 
]/Po ~ hz% 

Substituting in Eq. (14) the pa ramete r  values cor res  ponding to the variant  calculated in Fig. 6, with h l = 
10 -2 R0, we obtain J/Pv < 0.2 m / s e c .  At the same time f~ ~ (Ap/pl)l/2 ~ 6 m / s e c .  Consequently, with this 

choice of step J/Pv << f~' and according to Eq. (3) w v ~ R. The lat ter ,  if we also neglect the thermal  flux into 
the vapor phase [10], leads by integration of Eq. (5) to the welt-known relationship for an adiabatic gas bubble 

" ~: prR~7 ~ C011st. 

Thus, the close agreement  observed by the authors of [10] between their  calculations and the behavior 
of a cons tan t -mass  adiabatic gas bubble, together with the divergence f rom the experimental  results  of [8] (no 
c lear  bubble pulsations observed),  is hardly surpris ing.  

The authors thank R. I. Nigmatulin for his in teres t  in the study and for his valuable advice. 
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